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Many different study designs involve the analysis 
of the same subject (or experimental unit) in different 
situations or under repeated conditions (Figure 1). This 
occurs in longitudinal time-dependent assessments 
(for example, before and after measures, clinical trials, 
studies of the progress over time of intervention),1,2 when 
measures of different areas of the same subject 
are assessed (for example, comparisons between 
adjacent structures: healthy vs. sick and split body 
interventions),3,4 or when measures are obtained from 
the same organism challenged by different stimuli (for 
example, response to drugs, temperature, or pain).5,6

Variables for which there is a link (whether 
temporal or organic) between different measures 
generate data that should be analyzed in a dependent 
manner (paired or correlated), which minimizes the 
variability between these measures, maximizing 
the analytical power, and requiring smaller sample 
sizes for statistical inferences. However, quantitative 
analysis of dependent data is sensitive to different 
analytical assumptions, which demands caution when 
choosing which statistical techniques to employ and 
when interpreting their results.7-9

Didactically, there are four different analytical 
approaches, based on the concept of “change” in 
the measures and which guide statistical analysis 
with different techniques and can lead to different 
conclusions being drawn from the same set of data. 
These techniques are (i) identification of change, 
(ii) comparison of the absolute change in a measure, 
(iii) comparison of the relative change in a measure, 
or (iv) conversion of values to a specific outcome.

To illustrate these approaches, Figure 2 shows a 
hypothetical data distribution of the areas of venous 

ulcers in a three-armed randomized trial of dressings 
(A, B, and C) lasting 120 days. Table 1 presents the 
statistics for these samples according to the four 
analytical approaches, exploring the nuances of the 
analysis of data from dependent measures. In this 
example, the three groups have initial mean values 
(D0) and final mean values (D120) with no statistical 
difference between them (p ≥ 0.1), which gives the 
impression that the behavior of the groups is similar; 
whereas an individual analysis of the change in their 
measures (D0-D120) may reveal different conclusions, 
depending on the analytical assumptions adopted.

In the first analytical approach, the identification of 
a difference (or change) in status between the situations 
is based on the hypothesis that the mean difference 
between measures will be different from zero. This is 
the condition usually employed in exploratory studies 
because it is not itself dependent on the dimension 
of change, but on the probability of identifying a 
difference between the dependent measures.

For frequency comparisons of paired quantitative 
measures, the Student’s t-test (for paired data) or the 
Wilcoxon test is used, depending on whether the 
distribution of the differences between measures is 
normal.10 Comparison of paired ordinal data can be 
accomplished using the Wilcoxon test and the McNemar 
test can be used for the comparison of dichotomous 
data.11 As measures of the effect size of this type of 
analysis, it is usual to present the mean (or median) 
difference between the pair of measures and its 95% 
confidence interval.12

Simultaneous assessment of more than one pair 
of quantitative measures of the same subject can 
be accomplished using repeated measures analysis 
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of variance (ANOVA) or the Friedman test if data 
normality and sphericity (Mauchly’s test) are not 
demonstrated. For analysis of multiple dependent 
ordinal and dichotomous measures, the Friedman test 
and Cochran’s Q should be used, respectively. Once 
a difference has been identified using one of these 
multiple comparison tests, post hoc analysis should 
be used to show which comparisons are responsible 
for the difference found between times or groups. 
Several different procedures exist to minimize the error 
introduced by successive multiple comparisons (for 
example, Tukey; Bonferroni; Šidák; Scheffé; Ryan-
Einot-Gabriel and Welsh Q [REGWQ]; Dunnett; and 
Games-Howell, etc.), which are based on different 
theoretical assumptions and which should be chosen 
with the help of an experienced statistician.13-16

In the example shown in Figure  2, all of the 
treatment groups result in non-zero differences 

(p < 0.001) in the area of the ulcers (D0 vs. D120), 
as identified with Student’s t-test (for paired data) 
applied to each treatment separately, showing that all 
three groups changed their baseline status (Table 1). 
However, simply identifying a change in the values 
does not per se provide an adequate dimension of 
the difference to conduct an analysis between the 
study groups, preventing detection of the superiority 
of one treatment over another, albeit the confidence 
intervals for the differences do offer a certain idea of 
the intergroup behavior.

At this juncture, the second analytical approach is 
to only compare the absolute change in the dependent 
values for different groups (by subtracting before and 
after, for example), enabling comparisons between 
measures from longitudinal series with more than two 
observations or analysis of trials with more than one 
arm assessed using dependent measures.

This second strategy reduces the complexity of the 
analysis, and, since only the absolute change in values 
is compared, the differences in the measures can be 
compared between study groups using statistical tests 
for independent samples, such as Student’s t-test, the 
Mann-Whitney test, or Pearson’s chi-square test when 
making comparisons between two different groups 
or using ANOVA, the Kruskal-Wallis test, or the chi-
square test for more than two groups. However, for 
longitudinal series with more than two consecutive 
temporal assessments in a single group, the values 
for the change with relation to baseline status still 
maintain a certain dependence on each other and 
should therefore be analyzed using the techniques 
described for the first analytical approach.

For the example illustrated in Figure 2 and shown 
in Table 1, the second analytical approach detects 
that the absolute change (D0-D120) in the ulcer 
area was different in each of the three treatment 
groups (p < 0.001), indicating differences between 

Figure 1. Schematic diagram illustrating study designs in which 
the measures of variables have some degree of dependence. (A) 
Longitudinal follow-up over time. The individual measures at 
visit 1 (V1) should be weighted for analysis of the behavior at 
subsequent visits (V2 and V3); (B) stimuli assessed in the same 
organism. Measures provoked by stimuli E1, E2, and E3 should 
be analyzed according to the organism to which they were 
administered; (C) simultaneous interventions in the same subject, 
with longitudinal follow-up. The effect of treatments 1 and 2 (T1 
and T2) administered to different sites in the same subject (in 
a split body trial, for example) should be compared according 
to the individual response, creating a double dependence: by 
time (V1 and V2) and by subject; (D) clinical trial. The effects 
of treatments (T1 and T2) should be analyzed according to the 
individual effect, over time.

Figure 2. Graphical representation of the area of 75 lower limb 
venous ulcers treated over 120 days with three different strategies: 
(A, B, and C) Hypothetical data. D0: baseline area; D120: area 
after 120 days of treatment; D0–D120: absolute difference in 
the area from start to end of the clinical trial.
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the interventions. However, this analysis does not 
consider the importance of the values before the 
intervention (in this example, the area of the ulcers at 
D0), the time since disease onset, correct adherence 
to treatments, the body areas affected, the class of 
venous insufficiency, or even the patient’s underlying 
clinical conditions, all of which are elements that could 
interfere with the absolute change in venous ulcer 
measurements.17 Although exclusively comparing 
absolute changes in values reduces analytical complexity, 
it is not routinely employed in clinical research when 
the experiment is not rigidly controlled or when the 
phenomenon can be influenced by other factors, such 
as subjects’ prior status, underlying organic conditions, 
or environmental stimuli.9,18

To deal with this contingency, the third analytical 
approach consists of analyzing the relative change in 
the dependent measures. It employs the same tests 
used to compare the absolute differences but considers 
the relative change in values. When the data from 
the example (Figure 2 and Table 1) are compared 
in terms of percentage change, no differences are 
found between the treatments (p = 0.365). However, 
the percentage reductions in these measures may 
not adequately reflect the baseline status and tend to 
have nonparametric distributions, imposing a less 

satisfactory performance on the intergroup comparison 
of changes.19

Indeed, an individual percentage change in a clinical 
outcome will be larger when the baseline value is 
smaller. After obesity treatments, patients with larger 
initial body mass will exhibit larger absolute weight 
reductions, but smaller percentage reductions than 
patients with lower weight prior to the intervention.

In this case, returning to the example in Figure 2, 
when the change in the values of the measurements 
(D0-D120) is adjusted by their prior values (D0 for 
example), the reduction in areas can be compared 
between the three treatments weighted for their relative 
initial values. If the groups do not differ in terms of 
their baseline status, as is the case in this example, 
the use of generalized linear models (analysis of 
covariance [ANCOVA]), adjusted for the baseline 
value (or for another type of control), will maximize 
the analytical power of repeated measures between 
groups, and this strategy also allows adjustment 
for other covariates of interest (for example, age or 
comorbidities) and is widely used for clinical trials 
and exploratory research.20-22 While this approach is 
sensitive to the detection of changes between groups, 
it does not necessarily incorporate any considerable 
clinical significance. In the example illustrated in 

Table 1. Description of the areas (cm2) of samples of 75 lower limb venous ulcers treated for 120 days with three different strategies, 
A, B, and C, and the results of analyses using the analytical approaches discussed in the text.

Descriptive statistics Treatment A Treatment B Treatment C

D0*, § 15.5 (3.0) 15.6 (2.8) 17.1 (2.5)

D120*, §§ 3.5 (3.0) 2.4 (2.0) 2.5 (1.9)

Evaluation of change Treatment A Treatment B Treatment C

D0-D120** 12.0 (11.5–12.5) 13.1 (12.7–13.6) 14.6 (13.8–15.4)

p-value † < 0.001 < 0.001 < 0.001

Absolute difference Treatment A Treatment B Treatment C

Reduction in area * 12.0 (1.2) 13.1 (1.1) 14.6 (1.8)

Treatment A vs. B Treatment A vs. C Treatment B vs. C

Difference between treatments** 1.2 (0.4–1.9) 2.6 (1.7–3.6) 1.5 (0.6–2.4)

p-value†† 0.004 <0.001 <0.001

Relative difference Treatment A Treatment B Treatment C

Percentage reduction* 79.9 (15.7) 86.0 (10.7) 86.0 (9.4)

Treatment A vs. B Treatment A vs. C Treatment B vs. C

Difference in percentages**, §§§ 6.2 (-1.9–14.2) 5.7 (-2.0–13.4) 0.5 (-6.1–7.1)

Difference adjusted for D0** 1.1 (0.4–1.9) 2.2 (1.3–3.0) 1.0 (0.3–1.7)

p-value‡ 0.001 < 0.001 0.003

Outcome: full healing Treatment A Treatment B Treatment C

n (%) 6 (24%) 4 (16%) 0 (-)

Treatment A vs. B Treatment A vs. C Treatment B vs. C

Difference (%) between groups** 8.0 (-14.1–30.1) 24.0 (3.6–44.4) 16.0 (-0.1–32.4)

p-value‡‡ 0.477 0.015 0.057
*Mean (standard deviation). **Mean difference (95% confidence interval). †t-test for paired samples. ††One-way analysis of variance (ANOVA) (sequential Šidák post 
hoc). ‡Generalized linear model – normal distribution (sequential Šidák post hoc). ‡‡Generalized linear model– logit distribution (sequential Šidák post hoc). §p = 
0.054 (one-way ANOVA test). §§p = 0.498 (Kruskal-Wallis test). §§§p = 0.365 (Kruskal-Wallis test).
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Figure  2, all of the treatments are different from 
each other (p < 0.01), and significant differences of 
the order of 1 cm2 can be detected (Table 1), so the 
clinical relevance of this should be pondered.12

The fourth analytical approach to dependent 
measures considers whether a set outcome has been 
reached (for example, normalization of blood pressure, 
50% flow patency, glycated hemoglobin levels of 
< 7%, complete healing of the ulcer, or absence of 
claudication after walking four blocks). From the 
pragmatic point of view, dichotomous outcomes (known 
as “hard” outcomes) have a highly understandable 
meaning that can be transposed to clinical practice 
and are frequently used as the primary endpoints of 
clinical trials. Dichotomous outcomes are analyzed 
with techniques for the comparison of proportions 
between groups, represented by the percentage of 
events and its 95% confidence interval.23

Analysis of dichotomous outcomes as the parameter 
of change in the analysis of data from dependent 
measures offers less statistical power and requires 
larger samples than the analytical techniques used in 
the earlier situations and is fundamentally dependent 
on the prior condition of the measures in the subjects. 
In the example shown in Figure 2 (Table 1), although 
treatment C provoked a larger numerical reduction 
in ulcer area, this was also the intervention that least 
induced full healing, which could be because of the prior 
status of the ulcers themselves, with subjects having 
greater initial ulcer area, but could also be because of 
clinical conditions that interfere with healing. This is 
relevant in the comparison of clinical trials or in the 
evaluation of the results of meta-analyses, because the 
participants’ baseline conditions (for example, age, 
weight, comorbidities, disease severity, and metabolic 
status) may differ between studies, interfering in 
the achievement of outcomes, irrespective of the 
treatment analyzed.24,25 Moreover, although logistic 
models can be adjusted for other covariates, this type 
of correction is not usually employed in the analysis 
of clinical trials.

Since all four analytical approaches are absolutely 
correct and justifiable, it should be remembered that 
each may lead to different conclusions with respect 
to the same study. It is therefore the researcher’s 
prerogative to define, a priori, which approach will be 
taken, while the analytical techniques, the objectives, 
and the results obtained are all conditioned by the 
strategy employed.26 Moreover, when describing 
data from repeated measures, care should be taken 
to present the results in line with the analytical 
objectives required and the discussion of the results 
should cover the limitations of using one or another 
of the possible approaches.

As the structure of the study data acquires a certain 
degree of complexity, such as several repetitions, 
comparison of repetitions between groups, dependence 
in more than one condition, different baseline status 
between groups, inadequate sphericity, the need to 
weight results for the behavior of other covariates, 
covariance structures between less common measures, 
or where longitudinal follow-up times are not set for 
all observations, analytical modeling should tend 
towards generalized estimating equations (GEE) 
or generalized linear mixed-effects models. These 
techniques can be adapted for the analysis of unimodal 
quantitative variables (with normal or asymmetrical 
distributions), count type variables, and ordinal, 
multinomial, or dichotomous qualitative variables, 
making the analysis more versatile and a better fit 
to the data.27-31

Along the same lines, analytical designs exist that 
demand simultaneous study of different variables 
from the same subject, creating a structure of 
dependence within the individual, as is the case 
of quality of life scales that assess more than one 
dimension (for example, the Venous Insufficiency 
Epidemiological and Economic Study – Quality of 
Life/Symptom [VEINES-QoL/Sym], Skindex-17), 
different sets of symptoms, or different serum markers 
secreted after a single stimulus.32-34 Quantitative 
analysis of groups using simultaneous analysis of 
more than one dependent variable demands the use 
of methods known as multivariate, such as profile 
analysis, multivariate analysis of variance (MANOVA), 
permutational multivariate analysis of variance 
(PERMANOVA), canonic correlation, or Log-linear 
models (multivariate),23,35-37 but their complexity 
demands supervision by a statistics professional with 
experience in this type of modeling.

Finally, while study designs involving data with 
dependent measures increase the statistical power 
of the analysis, it is necessary to present a highly 
detailed description of the analytical objectives and 
the statistical techniques employed, since they have 
direct implications for sample sizing and the type of 
results provided by the study.
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